Circulant Preconditioners for Solving Ordinary Differential Equations

نویسنده

  • RAYMOND H. CHAN
چکیده

In this paper, we consider the solution of ordinary diierential equations using boundary value methods. These methods require the solutions of one or more unsymmetric, large and sparse linear systems. Krylov subspace methods with the Strang block-circulant preconditioners are proposed for solving these linear systems. We prove that our preconditioners are invertible and all the eigenvalues of the preconditioned systems are clustered around 1. Therefore we expect fast convergence when Krylov subspace methods such as the GMRES method are applied to solving these preconditioned systems. Numerical results are reported to illustrate the eeectiveness of our methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strang-type Preconditioners for Solving Linear Systems from Neutral Delay Differential Equations

We study the solution of neutral delay differential equations (NDDEs) by using boundary value methods (BVMs). The BVMs require the solution of nonsymmetric, large and sparse linear systems. The GMRES method with the Strang-type block-circulant preconditioner is proposed to solve these linear systems. We show that if an Ak1,k2-stable BVM is used for solving an m-by-m system of NDDEs, then our pr...

متن کامل

Block {ω}-circulant preconditioners for the systems of differential equations

The numerical solution of large and sparse nonsymmetric linear systems of algebraic equations is usually the most time consuming part of time-step integrators for differential equations based on implicit formulas. Preconditioned Krylov subspace methods using Strang block circulant preconditioners have been employed to solve such linear systems. However, it has been observed that these block cir...

متن کامل

Convergence of the multistage variational iteration method for solving a general system of ordinary differential equations

In this paper, the multistage variational iteration method is implemented to solve a general form of the system of first-order differential equations. The convergence of the proposed method is given. To illustrate the proposed method, it is applied to a model for HIV infection of CD4+ T cells and the numerical results are compared with those of a recently proposed method.

متن کامل

Strang-type preconditioners for solving fractional diffusion equations by boundary value methods

The finite difference scheme with the shifted Grünwarld formula is employed to semi-discrete the fractional diffusion equations. This spatial discretization can reduce to the large system of ordinary differential equations (ODEs) with initial values. Recently, boundary value method (BVM) was developed as a popular algorithm for solving large systems of ODEs. This method requires the solutions o...

متن کامل

Strang-type Preconditioners for Solving Linear Systems from Delay Differential Equations

We consider the solution of delay differential equations (DDEs) by using boundary value methods (BVMs). These methods require the solution of one or more nonsymmetric, large and sparse linear systems. The GMRES method with the Strang-type block-circulant preconditioner is proposed for solving these linear systems. We show that if a Pk1,k2 -stable BVM is used for solving an m-by-m system of DDEs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999